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Abstract. We study the nonstationary solutions of Fokker–Planck equations associated to either
stationary or non stationary quantum states. In particular, we discuss the stationary states of
quantum systems with singular velocity fields. We introduce a technique that allows arbitrary
evolutions ruled by these equations to account for controlled quantum transitions. As a first
signficant application we present a detailed treatment of the transition probabilities and of the
controlling time-dependent potentials associated to the transitions between the stationary, the
coherent, and the squeezed states of the harmonic oscillator.

1. Introduction

In a few recent papers [1] the analogy between diffusive classical systems and quantum
systems has been reconsidered from the standpoint of the stochastic simulation of quantum
mechanics [2–4] and particular attention has been devoted there to the evolution of the classical
systems associated to a quantum wavefunction when the conditions imposed by the stochastic
variational principle are not satisfied (nonextremal processes). The problem studied in those
papers was the convergence of an arbitrary evolving probability distribution, solution of the
Fokker–Planck equation, toward a suitable quantum distribution. In [1] it was pointed out
that, while the correct convergence is achieved for a few quantum examples, these results
cannot be considered general, as was shown in some counterexamples: in fact, not only for
particular nonstationary wavefunctions (as for a minimal uncertainty packet), but also for
stationary states with nodes one does not recover in a straightforward way the correct quantum
asymptotic behaviour. For stationary states with nodes the problem is that the corresponding
velocity field to consider in the Fokker–Planck equation shows singularities at the locations of
the nodes of the wavefunction. These singularities effectively separate the available interval
of the configurational variables into noncommunicating sectors which trap any amount of
probability initially attributed and make the system nonergodic.

In a more recent paper [5], it has been shown that for transitive systems with stationary
velocity fields (as, for example, a stationary state without nodes) we always have an exponential
convergence to the correct quantum probability distribution associated to the extremal process,
even if we initially start from an arbitrary nonextremal process. These results can also be
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extended to an arbitrary stationary state if we consider separately the process as confined in
every region of the configuration space between two subsequent nodes.

In the same paper [5] it has been further remarked that while the nonextremal processes
should be considered virtual, as the nonextremal trajectories of classical Lagrangian mechanics,
they can however, become physical, real solutions if we suitably modify the potential in the
Schr̈odinger equation. The interest of this remark lies not so much in the fact that nonextremal
processes are exactly what is lacking in quantum mechanics in order to interpret it as a totally
classical theory of stochastic processes (for example, in order to have a classical picture of a
double-slit experiment [6]), but rather in the much more interesting possibility of engineering
and controlling physically realizable evolutions of quantum states. This observation would be
of great relevance, for instance, to the study and the description of: (a) transitions between
quantum states, (b) possible models for quantum measurements [3] and (c) control of the
dynamics of quantum-like systems (for instance, charged beams in particle accelerators) [7].

In particular, case (c) is being studied in the framework of Nelson stochastic mechanics
which is an independent and self-consistent reformulation of quantum mechanics [2, 3] and can
be applied in other areas of physical phenomenology. For instance, it can usefully account for
systems not completely described by the quantum formalism, but whose evolution is, however,
strongly influenced by quantum fluctuations, i.e. the so-called mesoscopic or quantum-like
systems. This behaviour characterizes, for example, the beam dynamics in particle accelerators
and there is evidence that it can be described by the stochastic formalism of Nelson diffusions
[1, 7] since in these quantum-like systems, trajectories and transition probabilities acquire a
clear physical meaning, at variance with the case of quantum mechanics.

On the other hand, quantum behaviours can be simulated by means of classical stochastic
processes in a by now well defined and established framework [2]. A stochastic variational
principle provides a foundation for that, in close analogy with classical mechanics and field
theory [3]. In this scheme the deterministic trajectories of classical mechanics are replaced
by the random trajectories of diffusion processes in configuration space. The programming
equations derived from the stochastic variational principle are formally identical to the
equations of the Madelung fluid [8], the hydrodynamical equivalent of the Schrödinger equation
[9]. On this basis, it is possible to develop a model whose phenomenological predictions
coincide with those of quantum mechanics for all the experimentally measurable quantities.
Within this interpretative code stochastic mechanics is nothing but a quantization procedure,
different from the canonical one only formally, but completely equivalent from the point of view
of the physical consequences: a probabilistic simulation of quantum mechanics, providing a
bridge between this fundamental physical theory and stochastic differential calculus. However,
it is well known that the central objects in the theory of classical stochastic processes, namely
the transition probability densities, seldom play any observable role in stochastic mechanics
and must be considered as a type of gauge variable. Several generalizations of Nelson stochastic
quantization have been recently proposed to allow for the observability of the transition
probabilities: for instance, stochastic mechanics could be modified by means of nonconstant
diffusion coefficients [1]; alternatively, it has been suggested that the stochastic evolution might
be modified during the measurement process [10].

The aim of the present paper is instead to show how the transition probabilities associated
to Nelson diffusion processes can play a very useful role in standard quantum mechanics,
in particular with regard to describing and engineering the dynamics of suitably controlled
quantum evolutions and transitions. More precisely, we consider the following problem in
the theory of quantum control:given an initial probability distributionρi associated to an
arbitrarily assigned quantum stateψi , we study its time evolution with the drift associated to
another arbitrarily assigned quantum stateψf , to determine the controlling time-dependent
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potentialVc(x, t) such that (1) at any instant of time the evolving probability distribution is that
associated to the wavefunction solution of the Schrödinger equation in the potentialVc(x, t),
and that (2) asymptotically in time the evolving distribution converges to the distributionρf
associated toψf .

After introducing the formalism of Nelson stochastic mechanics to describe quantum
evolutions in section 2, in sections 3 and 4 we provide a self-contained review of the Sturm–
Liouville problem for the Fokker–Planck equation and the techniques of solution for the Nelson
diffusions associated to stationary quantum states. In section 5 we discuss, in detail, the
example of the harmonic oscillator, explicitly solving for the transition probability densities of
the ground and of the low-lying excited states. Sections 6–8 are devoted to the study and the
solution of the problem outlined above, discussing the potentials associated to the definition of
controlled quantum evolution, and modelling transitions. Two explicit examples are studied
in detail: the controlled transition between the invariant probability densities associated to
the ground and the first excited state of the harmonic oscillator, and the controlled evolution
between pairs of coherent or squeezed wavepackets. In these cases the problem can be solved
completely, yielding the explicit analytic form of the evolving transition probabilities and of the
evolving controlling potentials at all times. Finally, in section 9 we present our conclusions and
discuss possible future extensions and applications of the technique introduced in the present
paper, with regard to the discussion of anharmonic quantum and quantum-like systems, the role
of instabilities in the initial conditions, and the implementation of optimization procedures.

2. Fokker–Planck equations and quantum systems

Here we will recall a few notions of stochastic mechanics in order to fix the notation. The
configuration of a classical particle is promoted to a vector Markov processξ(t) taking values
inR3. This process is characterized by a probability densityρ(r, t) and a transition probability
densityp(r, t | r′, t ′) and its components satisfy an Itô stochastic differential equation of the
form

dξj (t) = v(+)j (ξ(t), t)dt + dηj (t) (2.1)

wherev(+)j are the components of the forward velocity field. However, here the fieldsv(+)j are
not givena priori, but play the role of dynamical variables and are consequently determined
by imposing a specific dynamics. The noiseη(t) is a standard Wiener process independent of
ξ(t) and such that

Et (dηj (t)) = 0 Et (dηj (t) dηk(t)) = 2Dδjk dt (2.2)

where dηj (t) = ηj (t + dt) − ηj (t) (for dt > 0), D is the diffusion coefficient, andEt are
the conditional expectations with respect toξ(t). In what follows, for the sake of notational
simplicity, we will limit ourselves to the case of one-dimensional trajectories, but the results
that will be obtained can be immediately generalized to any number of dimensions. We will
suppose, for the time being, that the forces will be defined by means of purely configurational
potentials, possibly time-dependentV (x, t). A suitable definition of the Lagrangian and of
the stochastic action functional for the system described by the dynamical variablesρ and
v(+) allows one to select the processes which reproduce the correct quantum dynamics [2, 3].
In fact, while the probability densityρ(x, t) satisfies, as usual, the forward Fokker–Planck
equation associated to the stochastic differential equation (2.1)

∂tρ = D∂2
xρ − ∂x(v(+)ρ) = ∂x(D∂xρ − v(+)ρ) (2.3)

the choice for the Lagrangian field of

L(x, t) = m

2
v2
(+)(x, t) +mD∂xv(+)(x, t)− V (x, t) (2.4)
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enables one to define a stochastic action functional

A =
∫ t1

t0

E[L(ξ(t), t)] dt (2.5)

which leads, through the stationarity conditionδA = 0, to the equation

∂tS +
(∂xS)

2

2m
+ V − 2mD2∂

2
x

√
ρ√
ρ
= 0. (2.6)

The fieldS(x, t) is defined as

S(x, t) = −
∫ t1

t

E[L(ξ(s), s)|ξ(t) = x] ds +E[S1(ξ(t1))|ξ(t) = x] (2.7)

whereS1(·) = S(·, t1) is an arbitrary final condition. By introducing the functionR(x, t) ≡√
ρ(x, t) and the de Broglie ansatz

ψ(x, t) = R(x, t)eiS(x,t)/2mD (2.8)

equation (2.6) takes the form

∂tS +
(∂xS)

2

2m
+ V − 2mD2∂

2
xR

R
= 0 (2.9)

and the complex functionψ satisfies the Schrödinger-like equation

i(2mD)∂tψ = Ĥψ = −2mD2∂2
xψ + Vψ. (2.10)

If the diffusion coefficient is chosen to be

D = h̄

2m
(2.11)

we exactly recover the Schrödinger equation of quantum mechanics. Different choices ofD

also allow one to describe the effective quantum-like dynamics of more general systems.
On the other hand, if we start from the (one-dimensional) Schrödinger equation (2.10)

with the de Broglie ansatz (2.8) and the diffusion coefficient (2.11), separating the real and the
imaginary parts as usual in the hydrodynamical formulation [8], we recover equations (2.3)
and (2.6) withρ = R2 = |ψ |2 and the forward velocity field

v(+)(x, t) = 1

m
∂xS +

h̄

2m
∂x(lnR

2). (2.12)

3. The Sturm–Liouville problem and the solutions of the Fokker–Planck equation

Let us recall (see, for example, [11]) a few generalities about the techniques of solution of the
Fokker–Planck equation withD andv(+) two time-independent continuous and differentiable
functions defined forx ∈ [a, b] andt > t0, such thatD(x) > 0, andv(+)(x) has no singularities
in (a, b). The Fokker–Planck equation then reads

∂tρ = ∂2
x (Dρ)− ∂x(v(+)ρ) = ∂x [∂x(Dρ)− v(+)ρ]. (3.1)

The conditions imposed on the probabilistic solutions are of course

ρ(x, t) > 0 a < x < b t0 6 t∫ b

a

ρ(x, t)dx = 1 t0 6 t
(3.2)

and from the form of (3.1) the second condition takes the form

[∂x(Dρ)− v(+)ρ]a,b = 0 t0 6 t. (3.3)
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Suitable initial conditions will be added to produce the required evolution: for example, the
transition probability densityp(x, t |x0, t0) will be selected by the initial condition

lim
t→t+0

ρ(x, t) = ρin(x) = δ(x − x0). (3.4)

It is also possible to show by direct calculation that

h(x) = N−1e−
∫

[D′(x)−v(+)(x)]/D(x) dx N =
∫ b

a

e−
∫

[D′(x)−v(+)(x)]/D(x) dx dx (3.5)

is always an invariant (time independent) solution of (3.1) satisfying the conditions (3.2) (here
the prime symbol denotes differentiation). One should observe, however, that relation (3.1)
is not in the standard self-adjoint form [12]; this fact notwithstanding, if we define the new
functiong(x, t) by means of

ρ(x, t) =
√
h(x) g(x, t) (3.6)

it is easy to show thatg(x, t) obeys an equation of the form

∂tg = Lg (3.7)

where the operatorL acting on positive normalizable functionsϕ(x) and defined by

Lϕ = d

dx

[
r(x)

dϕ(x)

dx

]
− q(x)ϕ(x) (3.8)

with

r(x) = D(x) > 0

q(x) = [D′(x)− v(+)(x)]2

4D(x)
− [D′(x)− v(+)(x)]′

2

(3.9)

is now self-adjoint. By separating the variables by means ofg(x, t) = γ (t)G(x) we have
γ (t) = e−λt whileG must be a solution of a typical Sturm–Liouville problem associated to
the equation

LG(x) + λG(x) = 0 (3.10)

with the boundary conditions

[D′(a)− v(+)(a)]G(a) + 2D(a)G′(a) = 0

[D′(b)− v(+)(b)]G(b) + 2D(b)G′(b) = 0.
(3.11)

It is easy to see thatλ = 0 is always an eigenvalue for the problem (3.10) with (3.11), and that
the corresponding eigenfunction is

√
h(x) as defined from (3.5).

For the differential problem (3.10) with (3.11) we have that [12] the simple eigenvalues
λn will constitute an infinite, monotonically increasing sequence and the corresponding
eigenfunctionGn(x)will haven simple zeros in(a, b). This means thatλ0 = 0, corresponding
to the eigenfunctionG0(x) =

√
h(x) which never vanishes in(a, b), is the lowest eigenvalue,

and that all the other eigenvalues are strictly positive. Moreover, the eigenfunctions will form
a complete orthonormal set of functions inL2([a, b]) [13]. As a consequence, the general
solution of equation (3.1) satisfying the conditions (3.2) will have the form

ρ(x, t) =
∞∑
n=0

cne
−λnt√h(x)Gn(x) (3.12)

with c0 = 1 for normalization (remember thatλ0 = 0). The coefficientscn for a particular
solution are selected by an initial condition

ρ(x, t+0 ) = ρin(x) (3.13)
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and are then calculated from the orthonormality relations as

cn =
∫ b

a

ρin(x)
Gn(x)√
h(x)

dx. (3.14)

In particular, for the transition probability density we have from (3.4) that

cn = Gn(x0)√
h(x0)

. (3.15)

Sinceλ0 = 0 andλn > 0 for n > 1, the general solution (3.12) of (3.1) has a precise time
evolution: all the exponential factors in (3.12) vanish ast → +∞ with the only exception
being the termn = 0 which is constant, so that exponentially fast we will always have

lim
t→+∞ ρ(x, t) = c0

√
h(x)G0(x) = h(x). (3.16)

Therefore, the general solution will always relax in time toward the invariant solutionh(x).
As a consequence the eigenvaluesλn which solve the Sturm–Liouville problem define the
physical time scales of the decay. By the structure of equations (3.7)–(3.11) we see that tuning
the choice of the physical parameters that enter in the diffusion coefficient and in the forward
velocity field allows for different sets of eigenvalues which define different sets of timescales.
Hence, the rate of convergence can be fixed as to yield fast decay, slow decay, or even, on
proper observational scales, quasi-metastable behaviours, according to what kind of physical
evolution between quantum states one wants to realize. This point will be further discussed
and elucidated in section 6.

4. Processes associated to stationary quantum states

Let us consider now a Schrödinger equation (2.10) with a time-independent potentialV (x)

which gives rise to a purely discrete spectrum and bound, normalizable states. Let us introduce
the following notations for stationary states, eigenvalues and eigenfunctions:

ψn(x, t) = φn(x)e−iEnt/h̄

Ĥφn = − h̄
2

2m
φ′′n + V φn = Enφn.

(4.1)

Taking into account relation (2.11), the previous eigenvalue equation can also be recast in the
following form:

Dφ′′n =
V − En
h̄

φn. (4.2)

For these stationary states the probability densities are the time-independent, real functions

ρn(x) = |ψn(x, t)|2 = φ2
n(x) (4.3)

while the phase and the amplitude ofψn from (2.8) are

Sn(x, t) = −Ent Rn(x, t) = φn(x) (4.4)

so that the associated velocity fields from (2.12) are

v(+)n(x) = 2D
φ′n(x)
φn(x)

. (4.5)

Each v(+)n is time independent and presents singularities in the nodes of the associated
eigenfunction. Since thenth eigenfunction of a quantum system with bound states has exactly
n simple nodesx1, . . . , xn, the coefficients of the Fokker–Planck equation (2.3) are not defined
in thesen points and it is necessary to solve it in separate intervals by imposing the correct
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boundary conditions connecting the different sectors. In fact, these singularities effectively
separate the real axis inn + 1 sub-intervals with walls impenetrable to the probability current.
Hence the process will not have a unique invariant measure and will never cross the boundaries
fixed by the singularities ofv(+)(x): if the process starts in one of the sub-intervals, it will always
remain there [14].

As a consequence, the normalization integral (3.2) (witha = −∞ andb = +∞) is the sum
of n + 1 integrals over the sub-intervals [xk, xk+1] with k = 0, 1, . . . , n (where we understand,
to unify the notation, thatx0 = −∞ andxn+1 = +∞). Hence, forn > 1 equation (2.3) must
be restricted in each interval [xk, xk+1] with the integrals∫ xk+1

xk

ρ(x, t)dx (4.6)

constrained to a constant value fort > t0. This constant is not, in general, equal to one
(only the sum of thesen + 1 integrals amounts to one) and, since the separate intervals cannot
communicate, it will be fixed by the choice of the initial conditions. Therefore, due to the
singularities appearing in the forward velocity fieldsv(+)n for n > 1, we deal with a Fokker–
Planck problem with barriers. The boundary conditions associated to (2.3) then require the
conservation of probability in each sub-interval [xk, xk+1], i.e. the vanishing of the probability
current at the end points of the interval:

[D∂xρ − v(+)ρ]xk,xk+1 = 0 t > t0. (4.7)

To obtain a particular solution one must specify the initial conditions. In particular, we are
interested in the transition probability densityp(x, t |x0, t0), which is singled out by the initial
condition (3.4), because the asymptotic convergence inL1 of the solutions of equation (2.3)
is ruled by the asymptotic behaviour ofp(x, t |x0, t0) through the Chapman–Kolmogorov
equation [1]

ρ(x, t) =
∫ +∞

−∞
p(x, t |y, t0)ρ(y, t+0 ) dy. (4.8)

It is clear, at this point, that in every interval [xk, xk+1] (both finite or infinite) we can write the
solution of equation (2.3) along the guidelines sketched in section 3. We must only keep in
mind that in [xk, xk+1] we already know the invariant, time-independent solutionφ2

n(x) which
is never zero inside the interval itself, with the exception of the end pointsxk andxk+1. Hence,
as we have seen in the general case, with the position

ρ(x, t) = φn(x)g(x, t) (4.9)

we can reduce (2.3) to the form

∂tg = Lng (4.10)

whereLn is now the self-adjoint operator defined on [xk, xk+1] by

Lnϕ(x) = d

dx

[
r(x)

dϕ(x)

dx

]
− qn(x)ϕ(x) (4.11)

with

r(x) = D > 0 qn(x) =
v2
(+)n(x)

4D
+
v′(+)n(x)

2
. (4.12)

Equation (4.10) is solved by separating the variables, so that we immediately haveγ (t) = e−λt

while the spatial partG(x) of g must be the solution of

LnG(x) + λG(x) = 0 (4.13)
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with the boundary conditions

[2DG′(x)− v(+)n(x)G(x)]xk,xk+1 = 0. (4.14)

The general behaviour of the solutions of this Sturm–Liouville problem obtained as expansions
in the system of the eigenfunctions of (4.13) has already been discussed in section 3. In
particular, we deduce from (3.12) that for the stationary quantum states (more precisely, in
every sub-interval defined by two subsequent nodes) all the solutions of (2.3) always converge
in time toward the correct quantum solution|φn|2. As a further consequence, any quantum
solutionφ2

n defined on the entire interval(−∞,+∞) will be stable under deviations from its
initial condition.

5. An explicit example: the harmonic oscillator

To provide an explicit evolution of the probability and the transition probability densities of
stochastic mechanics, we consider, in detail, the example of a harmonic oscillator associated
to the potential

V (x) = m

2
ω2x2 (5.1)

with energy eigenvalues

En = h̄ω(n + 1
2) n = 0, 1, 2 . . . . (5.2)

Introducing the notation

σ 2
0 =

h̄

2mω
(5.3)

the time-independent part of the eigenfunctions (4.1) reads

φn(x) = 1√
σ0

√
2π2nn!

e−x
2/4σ 2

0Hn

(
x

σ0

√
2

)
(5.4)

whereHn are the Hermite polynomials. The corresponding forward velocity fields for the
lowest-lying levels are

v(+)0(x) = −ωx

v(+)1(x) = 2
ωσ 2

0

x
− ωx (5.5)

v(+)2(x) = 4ωσ 2
0

x

x2 − σ 2
0

− ωx

with singularities in the zeros of the Hermite polynomials. Whenn = 0 equation (2.3) takes
the form

∂tρ = ωσ 2
0 ∂

2
xρ + ωx∂xρ + ωρ (5.6)

and the fundamental solution turns out to be the Ornstein–Uhlenbeck transition probability
density

p0(x, t |x0, t0) = 1

σ(t)
√

2π
e−[x−α(t)]2/2σ 2(t) (t > t0) (5.7)

where we have introduced the notation

α(t) = x0e−ω(t−t0) σ 2(t) = σ 2
0

[
1− e−2ω(t−t0)] (t > t0). (5.8)
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The stationary Markov process associated to the transition probability density (5.7) is selected
by the initial, invariant probability density

ρ0(x) = 1

σ0

√
2π

e−x
2/2σ 2

0 (5.9)

which is also the asymptotic probability density for every other initial condition when the
evolution is ruled by equation (5.6) (see [1]) so that the invariant distribution also plays the
role of the limit distribution. Since this invariant probability density also coincides with the
quantum oneφ2

0 = |ψ0|2, the process associated by stochastic mechanics to the ground state
of the harmonic oscillator is nothing but the stationary Ornstein–Uhlenbeck process.

Forn > 1 the solutions of (2.3) are determined in the following way. As discussed in the
previous section, one has to solve the eigenvalue problem (4.13) which can now be written as

− h̄
2

2m
G′′(x) +

(
m

2
ω2x2 − h̄ω2n + 1

2

)
G(x) = h̄λG(x) (5.10)

in every interval [xk, xk+1] between two subsequent singularities of the forward velocity fields
v(+)n. The boundary conditions at the end points of these intervals, deduced from (4.14) through
(4.5), are

[φnG
′ − φ′nG]xk,xk+1 = 0. (5.11)

Remembering thatφn (but notφ′n) vanishes inxk, xk+1, the conditions to impose are

G(xk) = G(xk+1) = 0 (5.12)

where it is understood that forx0 andxn+1 we mean, respectively

lim
x→−∞G(x) = 0 lim

x→+∞G(x) = 0. (5.13)

At this point, it is also useful to state the eigenvalue problem in adimensional form by using the
reduced eigenvalueµ = λ/ω, and the adimensional variablex/σ0 which, by a slight abuse of
notation, will still be denoted byx. In this way equation (5.10) with conditions (5.12) becomes

y ′′(x)−
(
x2

4
− 2n + 1

2
− µ

)
y(x) = 0

y(xk) = y(xk+1) = 0.
(5.14)

If µm andym(x) are the eigenvalues and eigenfunctions of (5.14), the general solution of the
corresponding Fokker–Planck equation (2.3) will be (reverting to dimensional variables)

ρ(x, t) =
∞∑
m=0

cme−µmωtφn(x)ym

(
x

σ0

)
. (5.15)

The values of the coefficientscm will be fixed by the initial conditions and by the obvious
requirements thatρ(x, t) must be non-negative and normalized during the whole time
evolution. Two linearly independent solutions of (5.14) are

y(1) = e−x
2/4M

(
−µ + n

2
,

1

2
; x

2

2

)
y(2) = xe−x

2/4M

(
−µ + n− 1

2
,

3

2
; x

2

2

)
(5.16)

whereM(a, b; z) are the confluent hypergeometric functions. The complete specification of
the solutions obviusly requires the knowledge of all the eigenvaluesµm.

We consider first the instancen = 1 (x0 = −∞, x1 = 0 andx2 = +∞), which can be
completely solved [5]. In this case equation (5.14) must be solved separately forx 6 0 and
for x > 0 with the boundary conditionsy(0) = 0 and

lim
x→−∞ y(x) = lim

x→+∞ y(x) = 0. (5.17)
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A long calculation [5] shows that the transition probability density is now

p(x, t |x0, t0) = x

α(t)

e−[x−α(t)]2/2σ 2(t) − e−[x+α(t)]2/2σ 2(t)

σ (t)
√

2π
(5.18)

whereα(t) andσ 2(t) are defined in (5.8). However, it must be noted that (5.18) must be
considered as restricted tox > 0 whenx0 > 0 and tox 6 0 whenx0 < 0, and that only on
these intervals is it suitably normalized. In order to take into account both these possibilities
we can introduce the Heaviside function2(x) so that for everyx0 6= 0 we will have

p1(x, t |x0, t0) = 2(xx0)
x

α(t)

e−[x−α(t)]2/2σ 2(t) − e−[x+α(t)]2/2σ 2(t)

σ (t)
√

2π
. (5.19)

From equation (4.8) we can deduce the evolution of every other initial probability density. In
particular, it can be shown that, withρ1(x) = φ2

1(x)

lim
t→+∞p1(x, t |x0, t0) = 22(xx0)

x2e−x
2/2σ 2

0

σ 3
0

√
2π
= 22(xx0)ρ1(x). (5.20)

Hence, ifρ(x, t+0 ) = ρin(x) is the initial probability density, we have fort > t0

lim
t→+∞ ρ(x, t) = lim

t→+∞

∫ +∞

−∞
p(x, t |y, t0)ρin(y) dy

= 2φ2
1(x)

∫ +∞

−∞
2(xy)ρin(y) dy = 0(ε; x)ρ1(x) (5.21)

where we have defined the function

0(ε; x) = ε2(x) + (2− ε)2(−x) ε = 2
∫ +∞

0
ρin(y) dy. (5.22)

Whenε = 1 (with symmetric initial probability, equally shared on the two real semi-axes)
we have0(1; x) = 1 and the asymptotical probability density coincides with the quantum
stationary densityρ1(x) = φ2

1(x). If, on the other hand,ε 6= 1 the asymptotic probability
density has the same shape ofφ2

1(x) but with different weights on the two semi-axes.
If we consider the higher excited states, the Sturm–Liouville problem (5.14) must be

solved numerically in each sub-interval. For instance, in the casen = 2 we havex0 = −∞,
x1 = −1, x2 = 1 andx3 = +∞. Considering, in particular, the sub-interval [−1, 1], it can be
shown that beyondµ0 = 0 the first few eigenvalues are determined as the first possible values
such that

M

(
−µ + 1

2
,

3

2
; 1

2

)
= 0. (5.23)

This givesµ1 ∼ 7.44,µ2 ∼ 37.06,µ3 ∼ 86.41.

6. Controlled evolutions

In this section we move on to implement the programme outlined in the introduction, that
is to exploit the transition probabilities of Nelson stochastic mechanics to model controlled
quantum evolutions to arbitrarily assigned final quantum states. We start by observing that to
every solutionρ(x, t) of the Fokker–Planck equation (3.1), with a givenv(+)(x, t) and constant
diffusion coefficient (2.11), we can always associate the wavefunction of a quantum system.
To this end, it is sufficient to introduce a suitable time-dependent potential.
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Let us take a solutionρ(x, t) of the Fokker–Planck equation (3.1), with a givenv(+)(x, t)
and a constant diffusion coefficientD: introduce the functionsR(x, t) andW(x, t) from

ρ(x, t) = R2(x, t) v(+)(x, t) = ∂xW(x, t) (6.1)

and rememeber from (2.12) that the relation

mv(+) = ∂xS + h̄
∂xR

R
= ∂xS +

h̄

2

∂xρ

ρ
= ∂x

(
S +

h̄

2
ln ρ̃

)
(6.2)

must hold, wherẽρ is an adimensional function (argument of a logarithm) obtained from the
probability densityρ by means of a suitable and arbitrary dimensional multiplicative constant.
If we now impose that the functionS(x, t)must be the phase of a wavefunction as in (2.8), we
immediately obtain from (6.1) and (6.2) the equation

S(x, t) = mW(x, t)− h̄
2

ln ρ̃(x, t)− θ(t) (6.3)

which allows one to determineS from ρ and v(+) (namelyW ) up to an additive arbitrary
function of timeθ(t). However, in order that the wavefunction (2.8) withR andS given
above be a solution of a Schrödinger problem in quantum mechanics, we must also make sure
that the Hamilton–Jacobi–Madelung equation (2.9) is satisfied. SinceS andR are now fixed,
equation (2.9) must be considered as a relation (constraint) defining the controlling potential
Vc, which, after straightforward calculations, yields

Vc(x, t) = h̄2

4m
∂2
x ln ρ̃ +

h̄

2
(∂t ln ρ̃ + v(+)∂x ln ρ̃)− mv

2
(+)

2
−m∂tW + θ̇ . (6.4)

Of course, if we start with a quantum wavefunctionψ(x, t) associated to a given time-
independent potentialV (x) and we select as a solution of (2.3) exactlyρ = |ψ |2, then
formula (6.4) always yields back the given potential, as it should. This can be explicitly
seen (to become familiar with this kind of approach) in the examples of the ground state and
the first excited state of the harmonic oscillator potential (5.1), by choosing, respectively, in
equation (6.4)θ(t) = h̄ωt/2 andθ(t) = 3h̄ωt/2, which amounts to suitably fixing the zero of
the potential energy.

On the other hand, the nonstationary fundamental solution (5.7) associated to the velocity
field v(+)0(x) of (5.5) for the casen = 0 (we putt0 = 0 to simplify the notation) does not
correspond to a quantum wavefunction of the harmonic oscillator whatsoever. However, it is
easy to show that, by choosing

θ̇ (t) = h̄ω

2

(
2σ 2

0

σ 2(t)
− 1

)
= h̄ω

2

1

tanhωt
→ h̄ω

2
(t → +∞) (6.5)

and the time-dependent controlling potential

Vc(x, t) = h̄ω

2

[
x − α(t)
σ (t)

]2
σ 2

0

σ 2(t)
− mω

2x2

2
→ mω2x2

2
(t → +∞) (6.6)

with α(t), σ(t) andσ0 defined in equations (5.8) and (5.3), we can define a quantum state,
i.e. a wavefunctionψc(x, t) solution of the Schr̈odinger equation in the potential (6.6). At the
same timeψc is associated to the transition probability density of the form (5.7) which is its
modulus squared. Of course, the fact that fort → +∞ we recover the harmonic potential is
connected to the already stated fact that the usual quantum probability density is also the limit
distribution for every initial condition and, in particular, also for the evolution (5.7). In the case
n = 1, with thev(+)1(x) as given by equation (5.5) and the transition probability density (5.19),
we define

T (x) = x

tanhx
(6.7)
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and then we choose

θ̇ (t) = h̄ω

2

(
4σ 2

0

σ 2(t)
− 2σ 2

0α
2(t)

σ 4(t)
− 1

)
→ 3

2
h̄ω (t → +∞) (6.8)

so that we have the following time-dependent controlling potential (for everyx 6= 0):

Vc(x, t) = mω2x2

2

(
2σ 4

0

σ 4
− 1

)
+ h̄ω

[
1− σ

2
0

σ 2
T
(xα
σ 2

)]
− h̄2

4mx2

[
1− T

(xα
σ 2

)]
→ mω2x2

2
(t → +∞). (6.9)

The limit t → +∞must obviously be intended in a physical sense, i.e. for times much longer
thanλ−1

1 , the largest characteristic time decay in expansion (3.12). In this particular case
λ1 = ω. In fact, here the asymptotic potential is also the usual one of the harmonic oscillator,
but it must be considered separately on the positive and negativex semi-axes, since at the
point x = 0 a singular behaviour would show up whent → 0. This means that, if we also
asymptotically recover the right potential, it will be associated with a new boundary condition
in x = 0 since the system must be confined on one of the two semi-axes.

7. Modelling transitions

Given any couple(ρ, v(+))associated to a Fokker–Planck equation, the possibility of promoting
it to a solution of a Schr̈odinger problem by a suitable controlling potentialVc(x, t) enables one
to model quantum evolutions driving, for instance, the probability density of a given quantum
stationary state to another (decays and excitations). Moreover, an immediate generalization
of this scheme might open the way to modelling evolutions from a given, arbitrary quantum
state to an eigenfunction of a given observable. As a first example let us consider the transition
between the invariant probability densities associated to the ground and the first excited state
of the harmonic oscillator potential (5.1):

ρ0(x) = φ2
0(x) =

1

σ0

√
2π

e−x
2/2σ 2

0

ρ1(x) = φ2
1(x) =

x2

σ 3
0

√
2π

e−x
2/2σ 2

0 .

(7.1)

If we choose to describe the decayφ1 → φ0 we may exploit the Chapman–Kolmogorov
equation (4.8) with the transition probability density (5.7), and the initial probability density
ρ1(x). In this case, an elementary integration shows that the resulting evolution takes the form
(t0 = 0)

ρ1→0(x, t) = β2(t)ρ0(x) + γ 2(t)ρ1(x) (7.2)

where

β2(t) = 1− e−2ωt γ (t) = e−ωt . (7.3)

Recallingv(+)0(x) as given in (5.5) and the evolving probability density (7.2), and inserting
them in equation (6.4) we obtain the following form of the controlling potential:

Vc(x, t) = mω2x2

2
− 2h̄ωU(x/σ0;β/γ ) (7.4)

where

U(x; b) = x4 + b2x2 − b2

(b2 + x2)2
. (7.5)
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The parameter

b2(t) = β2(t)

γ 2(t)
= e2ωt − 1 (7.6)

is such thatb2(0+) = 0 andb2(+∞) = +∞. ThusU goes to zero ast → +∞ for anyx, and as
t → 0+ is one for everyx, except for a negative singularity inx = 0. As a consequence, while
for t → +∞ the controlling potential (7.4) simply tends to the potential (5.1), fort → 0+ it
presents an unessential shift of−2h̄ω in the zeroth level, and a deep negative singularity in
x = 0.

The singular behaviour of the controlling potential at the initial time of the evolution is a
problem connected to the proper definition of the phase functionS. In fact, from (6.3) we have

S(x, t) = − h̄
2

ln

[
β2(t) +

x2

σ 2
0

γ 2(t)

]
− h̄ω

2
t (7.7)

so that in particular we have

S(x, 0+) = − h̄
2

ln
x2

σ 2
0

. (7.8)

Instead, we would have expected that initially the phase be independent ofx as for every
stationary wavefunction. This means that in the constructed evolutionS(x, t) presents a
discontinuous behaviour fort → 0+. The problem arises here from the fact that we initially
have a stationary state characterized by a probability densityρ1(x) and a velocity field
v(+)1(x), and then suddenly, in order to activate the decay, we impose that the sameρ1 be
embedded in a different velocity fieldv(+)0(x) which drags it toward a new stationaryρ0(x).
This discontinuous change fromv(+)1 to v(+)0 is, of course, responsible for the remarked
discontinuous change in the phase of the wavefunction. We have therefore modelled a
transition which starts with a sudden, discontinuous kick. At present, this only seems to
have a mathematical meaning since it would be difficult to either implement it physically or to
simulate it numerically. However, in many instances discontinuous models can be relevant as
simplification of more complicated processes (as, for example, in rigid, instantaneous classical
collisions disregarding interaction details): here, in particular, an impulsive external field
turned on very quickly could well approximate our instantaneous interaction. Moreover, we
claim that it would also be possible to construct transitions that evolve smoothly fort → 0+

by taking into account a continuous and smooth modification of the initial velocity field into
the final one. This requirement would compel us to consider a new class of Fokker–Planck
equations with time-dependent forward velocity fieldsv(+)(x, t). In particular, to achieve the
proposed smooth controlled decay between two stationary states of the harmonic oscillator,
we should solve an evolution equation with a continuous velocity fieldv(+)(x, t)which evolves
smoothly fromv(+)1(x) tov(+)0(x). Clearly, the smoothing procedure can be realized in several
different ways and the selection must be dictated by the actual physical requirements and
outputs one is interested in. A suitable smoothing for our transitions which leads to manageable
equations still has to be found; however, in the following section we will study a problem in
which the smoothness of the evolution isa priori granted.

8. Smooth transitions: coherent and squeezed wavepackets

As anticipated at the end of the previous section we will now consider an instance of controlled
evolution that does not require an extra smoothing procedure for the driving velocity field, i.e.
the transition between pairs of coherent wavepackets. In particular, we will consider both the
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transition from a coherent oscillating packet (coherent state) to the ground state of the same
harmonic oscillator, and a dynamical procedure of squeezing a coherent wavepacket.

To this end we will recall a simple result [1] which indicates how to find the solutions
of a particular class of evolution equations (2.3) which includes the situation of our proposed
examples. If the velocity field of the evolution equation (2.3) has the linear form

v(+)(x, t) = A(t) +B(t)x (8.1)

withA(t) andB(t) continuous functions of time, then there are always solutions of the Fokker–
Planck equation in the normal formN (µ(t), ν(t)), whereµ(t) andν(t) are solutions of the
differential equations

µ̇(t)− B(t)µ(t) = A(t) ν̇(t)− 2B(t)ν(t) = 2D (8.2)

with suitable initial conditions. The first case that we consider is the coherent wavepacket with
a certain initial displacementa:

ψ(x, t) =
(

1

2πσ 2
0

)1/4

exp

[
− (x − a cosωt)2

4σ 2
0

− i

(
4ax sinωt − a2 sin 2ωt

8σ 2
0

+
ωt

2

)]
(8.3)

whose forward velocity field reads

v(+)(x, t) = aω(cosωt − sinωt)− ωx. (8.4)

The field (8.4) is of the required form (8.1), withA(t) = aω(cosωt−sinωt) andB(t) = −ω,
while the configurational probability density is

ρ(x, t) = |ψ(x, t)|2 = ρ0(x − a cosωt) (8.5)

with ρ0 that one of the ground state of the harmonic oscillator given by (7.1). It is easy to
show that whenB(t) = −ω, as in the case of the wavepackets we are considering, there are
coherent solutions of (2.3) withν(t) = σ 2

0 of the formN
(
µ(t), σ 2

0

)
, i.e. of the form

ρ(x, t) = ρ0(x − µ(t)). (8.6)

Now, the time evolution of such coherent solutions can be determined in one step, without
implementing the two-step procedure of first calculating the transition probability density
and then, through the Chapman–Kolmogorov equation, the evolution of an arbitrary initial
probability density. On the other hand, if we compare (5.5) and (8.4) we see that the difference
betweenv(+)0 andv(+) consists in the first, time-dependent term of the latter; hence it is natural
to consider the problem of solving evolution equation (2.3) with a velocity field of the type

v(+)(x, t) = A(t)− ωx
A(t) = aω(cosωt − sinωt)F (t)

(8.7)

whereF(t) is an arbitrary function varying smoothly between 1 and 0, or vice versa. In this
case evolution equation (2.3) still has coherent solutions of the form (8.6) with aµ(t)dependent
on our choice ofF(t) through equation (8.2).

A completely smooth transition from the coherent, oscillating wavefunction (8.3) to the
ground stateφ0 (5.4) of the harmonic oscillator can now be achieved, for example, by means
of the following choice of the functionF(t):

F(t) = 1− (1− e−�t )N =
N∑
k=1

(−1)k+1

(
N

k

)
e−ωkt (8.8)

where

� = lnN

τ
ωk = k� τ > 0 N > 2. (8.9)
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In fact, a functionF(t) of this form goes monotonically fromF(0) = 1 to F(+∞) = 0
with a flex point inτ (which can be considered as the arbitrary instant of the transition)
where its derivativeF ′(τ ) is negative and grows, in absolute value, logarithmically withN .
The condition that the exponentN > 2 also guarantees thatF ′(0) = 0, and hence that the
controlling potentialVc(x, t) given in equation (6.4) will continuously start att = 0 from the
harmonic oscillator potential (5.1), and asymptotically return to it fort → +∞. Finally, the
phase functionS(x, t) will also change continuously from that ofψ given in (8.3) to that of
the harmonic oscillator ground stateψ0. A long calculation yields the explicit form of the
controlling potential:

Vc(x, t) = mω2x
2

2
−mωax

N∑
k=1

(−1)k+1

(
N

k

)
[Uk(t)ωke

−ωkt −Wkωe−ωt ] (8.10)

where

Uk(t) = sinωt +
2ω2 sinωt − ω2

k cosωt

(ωk − ω)2 + ω2

Wk = 1 +
2ω2 − ω2

k

(ωk − ω)2 + ω2
=
√

2Uk
( π

4ω

)
.

(8.11)

The parametersτ andN , apart the constraints (8.9), are free and can be fixed by the particular
form of the transition that we want to implement, according to what specific physical situations
we are interested in. Finally we remark that, in a harmonic oscillator, the transition between
a coherent, oscillating wavepacket and the ground state is a transition between a (Poisson)
superposition of all the energy eigenstates to just one energy eigenstate: an outcome which,
at first sight, looks similar to that of an energy measurement. However, here the result (the
energy eigenstate) is deterministically controlled by a time-dependent potential. In fact, the
controlled transition that we have constructed does not produce mixtures, but pure states
(eigenstates). Moreover, all these different final states are not realized by just one apparatus,
as in the usual quantum measurement theory: indeed, here the Hamiltonian depends on the
desired outcome, and thus, the ‘measurement apparatus’ would have to be chosen differently
for different outcomes.

Until now we have considered transitions between Gaussian wavepackets with constant
width. However, it is also of great interest to discuss the case of controlling potentials able
to produce a wavepacket evolution with variable width: a kind of controlled squeezing of the
wavepacket. This could be very useful in instances such as the shaping of the Gaussian output
in the manufacturing of molecular reactions, or in the design of focusing devices for beams
in particle accelerators, in which the width of the bunch must be properly squeezed. We will
now discuss a simple case which also shows that, in the particular conditions chosen, it is also
possible to avoid the integration of the differential equations (8.2).

Let us remember that when the forward velocity field has the form (8.1) the Fokker–Planck
equation (2.3) always possesses Gaussian solutions of the form

ρ(x, t) = e−[x−µ(t)]2/2ν(t)

√
2πν(t)

(8.12)

if µ(t) andν(t) are solutions of (8.2). We now plan to describe evolutions of the quantum
state (2.8) such that (1) bothVc(x, t) andS(x, t) are continuous and regular at every instant,
and (2) the varianceν(t) satisfy the relations

ν(−∞) = σ 2
0 ν(+∞) = σ 2

1 . (8.13)

In practice this means that, if for example we require for the sake of simplicityµ(t) = 0
at every time, we will describe a transition from the ground state of a harmonic oscillator
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with frequencyω0 = D/σ 2
0 to the ground state of another harmonic oscillator with frequency

ω1 = D/σ 2
1 . It is convenient to remark here that this very simple transition cannot be achieved

by means of an arbitrary time-dependent potentialVc(x, t), given that it goes frommω2
0x

2/2
for t →−∞ tomω2

1x
2/2 for t → +∞. The intermediate evolution, indeed, when not suitably

designed, would introduce components of every other energy eigenstate of the final harmonic
oscillator which will not, in general, asymptotically disappear.

Let us recall here that the relevant quantities are the phase function

S(x, t) = mW(x, t)−mD ln ρ̃(x, t)− θ(t) (8.14)

(whereθ(t) is arbitrary and, from (6.1) and (8.1),W(x, t) = A(t)x + B(t)x2/2), and the
controlling potential

Vc(x, t) = mD2 ∂2
x ln ρ̃ +mD(∂t ln ρ̃ + v(+)∂x ln ρ̃)− mv

2
(+)

2
−m∂tW + θ̇ . (8.15)

Both these two functions are determined from the knowledge of the forward velocity field
v(+)(x, t) and of the adimensional densitỹρ(x, t) = σ0ρ(x, t). However, in this coherent
evolution it will not be necessary to integrate the differential equations (8.2) to obtain an
explicit form of S andVc. Indeed, sinceA(t), B(t) and lnρ(x, t) can be expressed through
(8.2) in terms ofµ(t), ν(t), µ̇(t), ν̇(t) andD, it is a straightforward matter to show that the
phase is of the general form

S(x, t) = m

2
[�(t)x2 − 2U(t)x +1(t)] (8.16)

with

�(t) = ν̇(t)

2ν(t)

U(t) = µ(t)ν̇(t)− 2ν(t)µ̇(t)

2ν(t)
(8.17)

1(t) = Dµ
2(t)

ν(t)
+D ln

2πν(t)

σ 2
0

− 2θ(t)

m

while the controlling potential reads

Vc(x, t) = m

2
[ω2(t)x2 − 2a(t)x + c(t)] (8.18)

where

ω2(t) = 4D2 − 2ν(t)ν̈(t) + ν̇2(t)

4ν2(t)

a(t) = 4D2µ(t) + 4ν2(t)µ̈(t)− 2µ(t)ν(t)ν̈(t) +µ(t)ν̇2(t)

4ν2(t)
(8.19)

c(t) = 8D2µ2(t)− 4Dν(t)ν̇(t)− 8D2ν(t)− (2ν(t)µ̇(t)− µ(t)ν̇(t) + 2Dµ(t))

4ν2(t)
+

2θ̇ (t)

m
.

We can simplify our notation by imposing thatµ(t) = 0 (and hence ˙µ(t) = µ̈(t) = 0) for
everyt , obtaining

S(x, t) = m

2
[�(t)x2 +1(t)] (8.20)

with

�(t) = ν̇(t)

2ν(t)

1(t) = D ln
2πν(t)

σ 2
0

− 2θ(t)

m
.

(8.21)
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The controlling potential also reduces to

Vc(x, t) = m

2
[ω2(t)x2 + c(t)] (8.22)

where

ω2(t) = 4D2 − 2ν(t)ν̈(t) + ν̇2(t)

4ν2(t)

c(t) = 2θ̇ (t)

m
−Dν(t)ν̇(t) + 2Dν(t)

ν2(t)
.

(8.23)

Hence the evolution is completely defined, through the four functions�(t), 1(t), ω2(t) and
c(t), by θ(t) andν(t). In particular, it is expedient to choose

θ(t) = mD

2
ln

2πν(t)

σ 2
0

+
mD2t

ν(t)
. (8.24)

In this way

1(t) = −2D2t

ν(t)
(8.25)

because from (8.13) we have ˙ν(±∞) = 0 so that (see (8.20)):

S(x, t) ∼ −mD
2t

σ 2
0

t →−∞

S(x, t) ∼ −mD
2t

σ 2
1

t → +∞.
(8.26)

This was to be expected from the fact thatmD2/σ 2
0 = h̄ω0/2 andmD2/σ 2

1 = h̄ω1/2 are the
energy eigenvalues of the ground states of the two harmonic oscillators. Moreover, from the
choice (8.24) it also follows thatc2(±∞) = 0 so that the controlling potential (8.22) will show
no asymptotical extra terms with respect to the initial and final harmonic potentials.

In order to completely specify the controlled evolution we are now left with the
determination of the form ofν(t). If b = σ1/σ0, then take

ν(t) = σ 2
0

(
b + e−t/τ

1 + e−t/τ

)2

(τ > 0) (8.27)

so that the transition happens around the instantt = 0 andτ controls its velocity. We thus
obtain the explicit expressions for the four functions (8.21) and (8.23):

�(t) = b − 1

τ

e−t/τ

(b + e−t/τ )(1 + e−t/τ )

1(t) = −2D2t

σ 2
0

(
1 + e−t/τ

b + e−t/τ

)2

ω2(t) = D2

σ 4
0

(
1 + e−t/τ

b + e−t/τ

)4

+
b − 1

τ 2

e−t/τ (1− e−t/τ )
(1 + e−t/τ )2(b + e−t/τ )

c(t) = −4D2(b − 1)

σ 2
0

e−t/τ (1 + e−t/τ )
(b + e−t/τ )3

t

τ
.

(8.28)

Their form is displayed in the figures 1–4, where to fix an example we have chosen the values
τ = 1,b = 2,ω0 = 1 andσ0 = 1 (as a consequence the units will be chosen so thatD = 1). As
can be seen, in this case the behaviour of the potential time-dependent parameters is not trivial
even for the very simple squeezing of a static Gaussian wavepacket from a given variance to
another. How to precisely follow this time dependence in a stable way will be the argument
of a forthcoming paper, as discussed in the next section.
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Figure 1. The parameter�(t) defined in (8.28)
with τ = 1 and b = 2. Dimensionally,
it is a frequency and it appears in the phase
S(x, t) (8.20) of a wavefunction smoothly evolving
between the two Gaussian distributions (8.12) with
different variances (8.13). The unit system in these
diagrams is chosen so thatD = h̄/2m = 1.

Figure 2. The parameter1(t) defined in
(8.28) with τ = 1, b = 2 andσ0 = 1.
Dimensionally, it is a diffusion coefficient
and appears in the form (8.20) of the phase
functionS(x, t).

Figure 3. The parameterω(t) from (8.28).
Dimensionally it is a frequency and it
determines the form of the control potential
Vc(x, t) in (8.22). Here tooτ = 1, b = 2
andσ0 = 1. The template of its time evolution
is a smoothed step allowing for a rather quick
transition to a final harmonic potential with a
new frequency.

9. Conclusions and outlook

We have shown how to treat the typical inverse problem in quantum control, i.e. that of
determining a controlling potential for a given quantum evolution, in the framework of Nelson
stochastic mechanics. In this way we have been able to determine the general characteristics
of controlled evolutions between assigned initial and final quantum states. The solution
techniques and the relation between the transition probabilities, phase functions and controlling
potentials have been discussed on general grounds. Detailed, explicit calculations have also
been shown in the paradigmatic test arena provided by the harmonic oscillator.
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Figure 4. The parameterc(t) from (8.28)
dimensionally is the square of a velocity and
appears in the potentialVc(x, t) in (8.22).
It allows for a time-dependent shift of the
potential zero value and is plotted here for
τ = 1, b = 2 andσ0 = 1.

Further extensions of the method outlined in the present paper are currently under study.
One immediate application to be faced is the generalization of the analysis performed for the
harmonic oscillator to anharmonic systems. The difficulty to be faced on the way toward this
aim is that one is, in general, forced to deal with approximate quantum wavefunctions, as in
the case of the quartic oscillator. Therefore, the controlled evolution must be supplemented
by a suitable feedback mechanism ensuring that the error initially made in choosing a certain
initial approximate state does not grow during the controlled time evolution. For example,
self-consistent variational methods of Hartree–Fock type could, on the one hand, give the
right approximation for the initial state, and on the other a control on the deviations from
the required evolution. One extremely interesting application would be the description of a
controlled evolution driving initial approximate quantum states of anharmonic systems to stable
wavepackets generalizations of the coherent states of the harmonic oscillator [15]. Besides the
obvious interest in several areas of quantum phenomenology, the above is also of great potential
interest in discussing the control and the reduction of aberrations in quantum-like systems, i.e.
deviations from the harmonic evolution that are detected in systems such as charged beams in
particle accelerators. Moreover, there is a number of interesting potentials (rigid square wells,
Morse, sestic oscillator and so on) such that at least a few eigenstates and eigenvalues are
perfectly known: hence it should be possible to calculate—at least in the form of a series—the
transition probability densities and hence the required controlled evolutions between initial
and final states.

Another very interesting future line of research that has been left virtually unexplored in
the present paper is the introduction of optimization procedures. We have barely touched upon
this problem when discussing the smoothing of the controlled transitions. Optimization of
suitable functionals, chosen according to the kind of physical evolution one needs or desires
to manufacture, would provide a powerful criterion of selection among the different possible
smoothed evolutions. Instances of functionals to be optimized during the controlled dynamics
that come naturally to mind are the uncertainty products of conjugate observables (to be
optimized to a relative minimum under the constraint of Schrödinger dynamics [16]), or the
relative entropy between the initial and final states. But many more can be imagined and
devised, according to the nature of the physical problem considered.

One last, but important, consideration is in order. When we implement a controlled
evolution by means of a suitable controlling potential we must also bear in mind that in
practice small deviations away from the designed potential and from the desired wavefunction
are always possible. In general, such deviations are not subsequently reabsorbed but rather
tend to drag the state away from the required evolution. Hence to really control these
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quantum evolutions it will be very important to study their stability under small deviations
and perturbations: this is of crucial importance from the standpoint of confronting the formal,
theoretical scheme with the practical applications. Work is currently in progress in all the
above-mentioned extensions of the present research, and we plan to report on it soon.
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